Asterisk 1.4

The Professional's Guide

Implementing, administering, and consulting on
commercial IP telephony solutions

Colman Carpenter
David Duffett
Nik Middleton

lan Plain

PUBLISHING
BIRMINGHAM - MUMBAL

Asterisk 1.4

The Professional's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009

Production Reference: 1030809

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847194-38-1

www . packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittaregmail.com)

Download at Boykma.Com

Credits

Authors Editorial Team Leader
Colman Carpenter Gagandeep Singh
David Duffett

Project Team Leader

Nik Middleton Lata Basantani
lan Plain
Project Coordinator

Reviewers Neelkanth Mehta

lan Plain

Jared Smith Proofreader

Philippe Lindheimer Laura Booth
Acquisition Editor Production Coordinator

James Lumsden Aparna Bhagat
Technical Editors Cover Work

Gagandeep Singh Aparna Bhagat

Charumathi Sankaran

Indexer
Rekha Nair

Download at Boykma.Com

Download at Boykma.Com

Foreword

Watching Asterisk move from being a personal coding project to a community of
tens of thousands of programmers and millions of users has been quite the ride

so far! Asterisk is only now hitting its prime, and there are so many more things
that creative people are going to do with the code. The growth of the project over
the years has stunned and pleased me, and it's amazing that well-written and
comprehensive books like this now exist to help more advanced users navigate the
waters of larger and more complex Asterisk installations. Asterisk installations are
now huge, both in numbers of locations and the unimaginably large size of many of
those locations — thousands or tens of thousands of users! Asterisk implementations
are rarely limited by the capability of the software but more often by not knowing
how to utilize it. Books like this play an important role in getting the experience of
those who have already done in the hands of those who want to do.

Hopefully the knowledge here allows you to continue your adventure with Asterisk,
moving from the basics of PBX construction to having the ability to quickly implement
advanced call logic processes and work with the more exotic telephony and VoIP
interfaces. The motto of "There's more than one way to do it!" is almost always true
with Asterisk —this book seems to contain an excellent cross-section of at least one

of those ways to do "it" (whatever "it" happens to be for your application) and you'll
quickly think of many other ways once you've mastered the methods shown.

The authors here have really shown some excellent detailed explanations of how

to use Asterisk, and I hope this provides the incentive for you, the reader, to
experiment in more wide-ranging ways with Asterisk once you've understood the
basics. Most of the Asterisk community has learned with hands-on experimentation,
and it's great to see more encouragement of this type of learning as is contained in
these pages. Kudos to the authors, especially David Duffett, who has been involved
with Asterisk for so long and has taught so many people their first dialplan routines
(and hopefully has left them uninjured from his famous habit of throwing candy at
people who give correct answers in class or in his talks).

Download at Boykma.Com

Soon you'll be doing least-cost-routing, integrating your instant messenger system
with your mobile phone calls, controlling robots with voice commands via your
phone, or dreaming up a new company based on some voice-based service that
nobody has tapped into yet. And the best thing about Asterisk is that it remains
open source —if you come up with a feature or enhancement that you think must be
in Asterisk, then the good news is that it can be! Become a member of the Asterisk
community, and your contributed code could be included. We all anxiously await
your book, your product, or just your involvement with the Asterisk community.

Mark Spencer
Chairman and CTO of Digium

Download at Boykma.Com

About the Authors

Colman Carpenter is the MD of Voicespan, a Kent-based company that offers
Asterisk-based systems to the SME market across the UK. He is an IT professional

of over 20 years standing, with experience in diverse areas such as IBM mid-range
software development, Lotus Notes and Domino consultancy, Data Management,
E-marketing consultancy, IT Management, Project Management, Wordpress Website
Design, and lately, Asterisk consultancy. He is a qualified PRINCE2 practitioner.

Voicespan (http://www.voicespan.co.uk) offers Asterisk-based systems as the
cornerstone of a holistic VolIP-telephony service for SMEs. They offer companies a
one-stop shop for implementing a VolP-capable system, encompassing Asterisk-based
systems, endpoints, trunks, telephony interfaces and network equipment, and the
consultancy necessary to bring it all together into a coherent whole. This is his

first book.

I would like to thank my wife, Hazel, and daughters, Caiti and Fay,
for their support during the writing of this book. At times it seemed
like you believed more than I in my ability to do so!

David Duffett delivers Asterisk training and consultancy around the world
through his own company (TeleSpeak Limited, www.telespeak.co.uk), in
addition to designing and delivering training for a number of companies,
including Digium, Inc.

A keen Asterisk enthusiast, David also enjoys podcasting, radio presenting, and
teaching public-speaking skills. He is a Chartered Engineer with experience in
fields including Air Traffic Control communications, Wireless Local Loop, Mobile
Networks, VoIP, and Asterisk. David has been in the telecoms sector for nearly

20 years and has had a number of computer telephony, VolIP, and Asterisk articles
published through various industry publications and web sites.

Download at Boykma.Com

Nik Middleton has been in wide-area communications since the mid-eighties.

He spent most of the nineties working in the US, where he developed a shareware
Microsoft mail to SMTP/POP3 connector that sold some 287,000 copies. He spent six
years working for DuPont in VA, developing remote monitoring systems for their
global Lycra business. In late 2000, he returned to the UK where he held various
senior positions in British Telecom, LogicaCMG, and Computer Science Corp.

In 2005, tired of working in London, he set up his own company (Noble Solutions)
providing VoIP solutions in rural Devon, where he now lives with his wife Georgina
and three children, Mathew, Vicky, and Isabel. A keen amateur pilot, his favorite
place when not in the office is flying over the beautiful Devon countryside.

Ian Plain has worked in the telecoms industry since 1981 and has designed some of
the largest PBX networks in the UK. Since the late 1990s, he has been involved with
VolIP initially for links between systems, and with IP PBX systems since 1999. Since
2003, he has been running a telecoms consultancy based near Bath in the UK, working
primarily on high-availability Asterisk-based solutions for corporate customers.

Download at Boykma.Com

About the Reviewers

Ian Plain: Please see the entry in About the Authors.

Jared Smith is the Training Manager for Digium, Inc. As a long time Asterisk user,
contributor, and evangelist, he has spent the last several years helping the Asterisk
community. Jared is a dynamic and knowledgeable instructor with several years of
experience in leading various Asterisk training classes.

He is also co-author of Asterisk: The Future of Telephony, O'Reilly Media and regularly
writes other Asterisk documentation as well.

Jared holds a Bachelors of Science degree in Computer Engineering from the Utah
State University and currently lives in Virginia with his wife and two children.

Philippe Lindheimer is the project leader and primary developer of FreePBX and
serves as the Open Source Community Director at Bandwidth.com, the corporate
sponsor of the FreePBX project (the most widely deployed Asterisk-based PBX/

GUI open-source application in the world). He cofounded and runs the Open
Telephony Training Seminar providing FreePBX/ Asterisk technical and marketing
training to resellers and end users. Originally with Hewlett Packard, he has been

in the engineering industry for over two decades, working on a range of technical
consulting roles with many Fortune 500 Companies.

He has a BS (Hons) in EE/CS from the University of Colorado, Boulder. He now
lives in the Seattle, WA area.

Download at Boykma.Com

Download at Boykma.Com

Table of Contents

Preface 1
Chapter 1: The Dialplan 9
Dialplan location 10
Extensions and contexts 10
Pattern matching 10
Why use contexts? 13
Call barring made simple 13
Time and day call routing 16
Variables 18
Inheritance of channel variables through the dialplan 19
Using the AstDB 21
Dialplan features and additions 22
func_devstate 22
What can we use the DEVSTATE() function for? 23
Using multiple broadband lines 26
Configuration overview 26
System() application 29
Summary 31
Chapter 2: Network Considerations when Implementing Asterisk 33
Centralized and distributed installations 34
Centralized installations 34
Distributed solutions 34
Latency and jitter 35
Jitterbuffer 39
Echo 40

Do your homework 40
SLAs are for everyone 42
Achieving the goal 42

Download at Boykma.Com

Table of Contents

Backups 44
To share or not to share 44
Ensuring quality 47
When things go wrong 49
Red 50
Amber 50
Green 50
Increasing resilience 50
Summary 51
Chapter 3: Call Routing with Asterisk 53
Routing methods 53
Where to start 55
Internal calls 56
Local calls 58
National calls 59
International calls 60
Alternative options 61
ENUM 62
DUNDi 64
Types of routing 66
Routing techniques 67
Summary 70
Chapter 4: Call Centers—Queues and Recording 71
Asterisk queues 71
Queue gotchas 72

A practical queue 72
Using queues to cascade calls 73
Call recording—the issues 74
Show-stoppers 74
VolP recording approaches 75
Impact of VoIP on recording systems 75
Hardware convergence 75
Distributed call centers 76
Home working 76
VolP recording challenges 76
Routing 76
Bandwidth 77
Encryption 77
Solutions 77

[ii]

Download at Boykma.Com

Table of Contents

Asterisk call center solutions 79
How VICIDIAL works 79
Handling inbound calls 84
Installation 85
Timing sources 86
Scalability 86
Summary 86
Chapter 5: Asterisk and Speech Technology 87
Why speech-enable? 88
Types of speech technologies 89
Automatic Speech Recognition (ASR) 89
Isolated Word Recognition 89
Connected Word Recognition 89
Natural Language Recognition 90
Text-to-Speech (TTS) 91
Speaker Verification and Identification (SVI) 91
MRCP 92
Implementation considerations 92
ASR and Asterisk 93
Installing LumenVox speech recognition with Asterisk 93
Checking that things are working 99
Grammar files 100
Implementation advice for ASR 101
TTS with Asterisk 103
Implementation advice for TTS 106
Summary 106
Chapter 6: Call Accounting and Billing 107
Call Data Records (CDRs) 107
CDR frontends 110
Call accounting 111
Providing termination billing 112
Every little helps 112
Selecting a billing platform 113
Introducing A2Billing 113
Reasons to consider A2Billing 113
A2Billing requirements 114
Monitoring usage 114
Coding for A2Billing 116
Billing gotcha! 116
High call volumes 117
Other high-call-volume solutions 117
Summary 118

[iii]

Download at Boykma.Com

Table of Contents

Chapter 7: Resilience and Stability 119
Increasing availability 120
Stability 121

Network 121
Cables 122
Switches and routers 122

Endpoints 122

Telephony switches and gateways 123

Server 123

Environment 124

Dealing with failure 125

Network resilience 125

Server 127
High availability 127

Telephony switches/gateways 129
Redfone foneBRIDGE2 129
Junghanns ISDNguard 130
Endpoints 130

Round robin DNS 131

Say hello to Rsync 132
Limiting the number of calls per server 134

Summary 135

Chapter 8: Localization and Practical Security 137
Tones 138
Time and date and localization 142
Changing the language of system prompts 146
Local telephony interfaces 147

Analog 148
Digital 149
Localizing caller ID signaling on Digium analog interfaces 150
Checklist 152
Practical security 152
Out of hours 156
Summary 157

Chapter 9: Interfacing with Traditional Analog and

Digital Telephony 159
Analog 159
Digital 161

ISDN BRI (Basic Rate Interface) 162

ISDN PRI (Primary Rate Interface) 163

[iv]

Download at Boykma.Com

Table of Contents

Choices, choices 166
Using external adaptors 167
Using cards 169

Installing a Digium card 170
Troubleshooting with Digium cards 187
Summary 188
Chapter 10: Integrating Asterisk with Wireless Technologies 189

Why integrate Asterisk with wireless technologies? 190

Wireless technology overview 191
Wi-Fi (only) phones 191
SIP desk phones with a wireless link 192
Dual-mode (GSM and SIP) phones and PDA/smart phones 193
SIP/DECT phones 195

Connecting Asterisk to mobile networks 197
Why connect to mobile networks? 197
The GSM gateway (box) 198
The GSM card 199

Configuring wireless devices 200

Configuring Asterisk to work with wireless technologies 204

Deployment choices 206

Neat money saving tricks 206
Calling a mobile phone 207
Avoiding those nasty roaming charges that arise from receiving calls 207

Summary 208

Chapter 11: Graphical User Interfaces 209

Reasons for going GUI 209

Good to GUI 210
Ease of administration 210
Access to enhanced features 211
Easier upgrade process 212
Standardized code 212

GUI, phooey! 213
Performance 213
Stability 215
Restricted functions 216

FreePBX 217
How it works 217
Installation 218

[v]

Download at Boykma.Com

Table of Contents

Configuration 219
Extensions 220
Inbound routes 221
Outbound routes 222
Trunks 223
Other records 224
Summary 225
Appendix A: Selling Your Solution 227
In the beginning ... 228
Drivers for changing phone systems 228
A word on cost 229
Generating interest 231
Alliances 232
Advertising 232
Search engines 232
Become an expert 233
Relationship marketing 234
Email as a marketing tool 234
Tracking prospects 235
Converting the prospect into a sale 236
Determining your customer's hardware requirements 236
Choosing the right phones 237
Remote support 238
Make it secure 239
Do's and don'ts 239

The do's 239
First impressions 239
Get brochures printed 239
Take notes 239
Send the quote in a timely manner 240
Follow up the quote 240
Target the decision makers, but don't ignore IT 240

The don'ts 240
You don't need a fancy office 240
Don't cut corners on the solution 241
Don't under price 241
Don't have a huge margin on handsets 242
Don't supply a PC as the phone server 242

Summary 243

[vil

Download at Boykma.Com

Table of Contents

Appendix B: Sample Email Content 245
What is VolP? 245
Why should | consider VolP? 246

Cost savings 246
Call costs 246
Line rental costs 246
Wiring costs 246
Reduced infrastructure costs 247

Centralized management 247
System integration 247
Unified messaging 247

Reliability 247
Closed and open systems 248
Superior sound 248
Fallback solutions 248
Broadcasting calls 248
A number for life 248
Number porting 248
Local numbers 249

About XYZ 249

Our philosophy 249

Our passion 249

Appendix C: Sample Appointment Sheet 251

Index 255

[vii]

Download at Boykma.Com

Download at Boykma.Com

Preface

This book is a sequel to Building Telephony Systems with Asterisk, which started you
on a journey to the summit of Asterisk knowledge, taking you from base camp to
camp two, from being a complete Asterisk newbie to a competent telephony system
builder and manager. Now it's time to push to the top, to take your telephony
knowledge to a point where you can build high-performance, resilient, and
professional PBXs using the most popular open source telephony software in

the world — Asterisk.

In that book, the focus was very much on installing and configuring Asterisk for a
number of common scenarios, including both home and office use. This it achieved
admirably, so you may now wonder why another book is needed. Well, there are
three main reasons for writing this book. Firstly, Asterisk is such a highly-capable
and configurable telephony engine that the 150-odd pages in the book necessarily
had to exclude discussion of some of the more advanced features, which we now
have the opportunity to explore. Secondly, Asterisk is invariably implemented

as part of an IP network, and further examination of network considerations is
warranted. Finally, like all popular open source software, Asterisk is constantly
being updated, and while this book still assumes the version 1.4 of Asterisk is in use,
we do point out any differences in version 1.6 where relevant, such as the change
from Zaptel to DAHDI.

Therefore, the goal of this book is to give you enough knowledge to build and
install a telephony system with Asterisk at its core, which will stand comparison
with the market-leading commercial IP-enabled systems. Whether you are building
such a system as a result of an internal company requirement, or you plan to offer
it as an element of a commercial package to customers, this book will take you
through all the areas that require consideration. On reading this book you will also
be in a position to understand the real-life issues you are likely to experience when
deploying such a system, both technical and otherwise.

Download at Boykma.Com

Preface

By its very nature, Asterisk demands that much of the focus of this book be on the
technical aspects of building your professional system. However, as with most IT
implementations, success will also rely on "soft" issues such as managing expectations,
understanding and meeting the customer's particular needs, and ensuring delivery is
on time and up to the budget. Hence, where appropriate, we make mention of the
non-technical aspects that may make a difference to your deployment.

To achieve our goal, this book will build on knowledge already gained by reinforcing
that learning and adding extra skills covering;:

e Security

e Networks

e Large-scale considerations

e Resilience

e Scalability

e Integration with complementary products

e Commercial aspects

Reviewing the basics

If you have not already done so, it is recommended that you read Building Telephony
Systems with Asterisk, or achieve a good degree of competence in building basic
Asterisk PBXs through other means. These could include commercial training
courses (see www.digium.com/en/training for further details) or openly available
internet resources such as the excellent VoIP wiki at http://www.voip-info.org.

While most people with a day-to-day exposure to Asterisk systems should stand
to gain much from this book, it has been written in the expectation that you will

possess the following Asterisk skills and experience, ideally gained through text
file configuration:

e Connecting Asterisk to analogue and digital PSTN lines, and VoIP services

e Configuring different types of terminal equipment (phones, communication
devices, other PBXs)

e Installing Asterisk, Zaptel and LibPRI

e Configuring features (Voicemail, Music On Hold, Queues, Conference
Rooms, and so on)

[2]

Download at Boykma.Com

Preface

e Creating a dialplan, including call distribution
e (CDRs, call monitoring and recording
e Backups and restores

e Basic security and load balancing

Once equipped with this knowledge you stand to gain the maximum from the topics
covered in this book, enabling you to build professional Asterisk systems to be
deployed internally, or to form the cornerstone of a commercial offering.

No compromise

In this book you will, hopefully, learn many new things. At its conclusion you will
have the knowledge to build and successfully implement systems that combine great
performance, resilience and stability. In order to do so, we will mainly consider
"pure" Asterisk systems that require a deep understanding of the dialplan and
configuration files without the safety-net of a GUI in between. Think of it as learning
to become a great car mechanic. You can certainly be a good mechanic earning a
good living by learning how to use a laptop plugged into an engine management
system. But if you want to take that extra step to being a true master of the trade
then you need to understand at a very deep level just how the internal combustion
engine works. So it is with Asterisk. It is perfectly feasible to put very good solutions
together using GUI-based systems such as the Digium-owned Switchvox, Trixbox
(formerly AsteriskeHome) or PBX in a Flash, but to construct the best systems you
will need to understand what is happening "under the hood" so that you can tweak
them appropriately to achieve or exceed the customers' expectations.

One advantage of eschewing the GUI approach is a potential increase in performance
and scalability through the use of a highly-optimized dialplan and a reduction in
applications running on the server. However, there are many situations where a GUI
is at least as appropriate, particularly if the customer wishes to carry out day-to-day
management tasks. Therefore, in Chapter 12 we look at the implications of choosing
a GUI-based solution over a "vanilla" system.

www.asteriskpro.co.uk

[To follow the "trusted network" of Asterisk developers please visit:]
o

[3]

Download at Boykma.Com

Preface

What this book covers

As a result of reading this book, you can expect to build on existing knowledge
and gain new skills. Each chapter covers a particular topic, but throughout there

is a focus on building an Asterisk system that can form the cornerstone of a serious
commercial product, capable of matching or even exceeding the performance of
well-known licensed products.

Chapter 1 talks about dialplan techniques including modular implementations
by using macros, contexts, and so on to both refine the dialplan and improve the
security of the system. It also discusses the use of the devstate () function.

Chapter 2 discusses customer network requirements and offers some good advice
about potential issues within the customer network and how to resolve them,
including the use of VLANSs and Quality of Service.

Chapter 3 looks at routing in general, including Least Cost Routing (local, national,
and international GSM gateways), fall-back routing, alternate routing, and so on.
ENUM and DUNDI are also explained within this context.

Chapter 4 considers call center requirements, including queues, agents, call
distribution strategies, performance monitoring and call recording issues. An
Asterisk-based call center solution, VICIDIAL, is also discussed in some detail.

Chapter 5 introduces speech technology in the form of ASR, TTS, and SVI; followed
by implementation advice and examples. Both Lumenvox and Cepstral packages are
explored in detail.

Chapter 6 looks at methods that can be used to implement call accounting and billing
solutions for Asterisk. In particular, Asterisk-stat and A2Billing are explored.

Chapter 7 discusses resilience and stability, giving you a guide to implementing
highly-available Asterisk solutions for mission-critical applications. Use of failover
and load-balancing techniques are explored.

Chapter 8 explores the comprehensive localization options within Asterisk, and also
suggests some easily deployed security measures.

Chapter 9 considers interfaces with traditional analogue and digital telephony, giving
more in-depth explanations of Libpri and DAHDI (formerly Zaptel), and discussing
implementation considerations.

Chapter 10 tackles the good and bad points of using wireless technologies with
Asterisk, covering Wi-Fi, dual-mode and DECT handsets. Some suggestions on
routing via cell/mobile networks are also offered.

[4]

Download at Boykma.Com

Preface

Chapter 11 looks at the good and bad points of Asterisk Graphical User Interfaces
(GUlIs), focusing on one of the most popular incarnations, FreePBX.

In Appendix A we also explore some of the softer skills required when selling
Asterisk-based solutions, suggesting some sales strategies that can help you in a
commercial environment.

In Appendix B you will find information you might want to include in sample emails
when pitching.

In Appendix C you will find a sample appointment sheet which can be used
as a template.

Onwards

So now our campsite has been packed away and it is time for the next part of our
journey to begin, for those first purposeful steps to be taken towards the summit. We
will start in Chapter 1 by looking at the heart of any Asterisk system, the dialplan.
You will already have significant knowledge in this area, but we are about to show
you some of the techniques that are used in systems with thousands of extensions
that handle many tens of thousands of calls per day. Without these techniques, a
dialplan can become an unholy mess as system size increases. However, using these
techniques will ensure that complexity is avoided and performance is maintained.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

exten => s,1,Dial(Zap/1,30)

exten => s,n,Goto(s-${DIALSTATUS}, 1)
exten => s,n,Hangup ()

exten => s-NOANSWER,1l,Voicemail (100, u)
exten => s-BUSY,1,Voicemail (100,b)
exten => 1i,1,Voicemail (0, s)

[5]

Download at Boykma.Com

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

% Warnings or important notes appear in a box like this.
v

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

[6]

Download at Boykma.Com

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/4381_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionsepacktpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[71]

Download at Boykma.Com

Download at Boykma.Com

The Dialplan

The dialplan is the routing core of an Asterisk server. Its sole role is to look at what is
dialed, and route the call to its destination. This is the core of any telephony system
and Asterisk is no different.

The dialplan is made up of three elements — extensions, contexts, and priorities. An
extension is number or pattern that the dialed number is to be matched against and

a context is a collection of extensions (and possibly other included contexts too). Each
extension will have one or more priorities, each of which appear on a separate line,
and the priority sequence always starts with the priority "1".

If you have read Building Telephony Systems with Asterisk, you will know how to
use extensions, priorities, contexts, and included contexts to handle incoming and
outgoing calls as well as to set up features such as:

e Call Queues

e (Call Parking

e Direct Inward Dialling

e Voicemail

e Automated Phone Directory

e Conference Rooms
In this chapter, we will build on this knowledge by looking at:

e Significant updates since Asterisk 1.2

e Pattern ordering within and between contexts
e Extending the dialplan with variables

e The DEVSTATE () function

e The sysTEM application

Download at Boykma.Com

The Dialplan

We will then use this knowledge to provide examples of:

e Advanced call routing with the DEVSTATE () function
e Call routing based on the time of the day
e Using multiple ADSL lines within Asterisk to boost call capacity

Dialplan location

The dialplan is primarily defined in the extensions. conf file. This can also
include additional files that are added into it using the #include directive. For
instance, systems using the FreePBX GUI will have extensions_additional.conf,
extensions_ custom.conf, and extensions override freepbx.conf as standard
files, which have been added using #include into the extensions.conf file. We
must also remain aware of files such as the features. conf file, as they also include
numbers that can be dialed such as codes for Pickup and Call Parking, and so form
part of the dialplan.

A list of standard and optional Asterisk configuration files can be found at
http://www.voip-info.org/wiki/view/Asterisk+config+files.

Extensions and contexts

Being familiar with Asterisk, you will have a good working understanding of
extensions and contexts already. They are, of course, the very heartbeat of Asterisk,
and as such they are probably subject to the most change from version to version, as
Asterisk evolves to cater for new hardware, software, and more complex working
practices. So let's have a quick review of extensions and contexts, pointing out
significant changes in versions 1.4 and 1.6, before we proceed to the more advanced
techniques and uses.

Pattern matching

Within the dialplan, matching can be either direct or partial against a pattern.
Normally in a PBX, these patterns are numeric. But with Asterisk, they can also

be alphanumeric or even just alpha. For example 2000, DID01234123456, and
Main_number are all valid extensions. As very few phones contain alphabetic keys,
the last two are typically only used for incoming DID channels. For the majority of
this chapter, we will stick to numeric patterns.

[10]

Download at Boykma.Com

Chapter 1

Let's start to explore pattern matching by looking at an extremely simple dialplan:

[context 1]

exten => 123,1,Answer ()

exten => 123,n,SayDigits (999${CALLERID (num) })
exten => 123,n,Hangup ()

In this dialplan, when a user with a context of context_1 dials 123, they will hear
999 and their caller ID will be read back to them.

Now let's look at a slightly more complex context:

[context 1]

exten => 1X.,1,Answer ()

exten => 1X.,n,SayDigits (${EXTEN}${CALLERID (num) })
exten => 1X.,n,Hangup ()

exten => 123,1,Answer ()

exten => 123,n,SayDigits(123${CALLERID (num) })
exten => 123,n,Hangup ()

You might expect that 123 would match against the _1x. extension, as that appears
first in the context. However, the way Asterisk orders the dialplan when loading
means that exact matches are checked for before pattern matches. Hence if you dial
123, it matches against the 123 pattern first and not the _1x. pattern. This pattern
would only route the call if an exact match did not exist in the context.

M It is sensible not to use the pattern . as a catch-all pattern, as this will
Q catch the Asterisk special extensions like i, t, h as well. It is far better to
use the X pattern.

Once understood, pattern matching is pretty straightforward and does what we
expect. However, if you introduce included contexts into the mix, things may work
in a way you did not expect and the order needs to be thought through carefully. In
particular, it's crucial to understand that Asterisk only checks included contexts after
checking for exact matches and pattern matches in the local context. The following
example illustrates this:

[context 1]

include => context 2

exten => 1X.,1,Answer ()

exten => 1X.,n,SayDigits (${EXTEN}${CALLERID (num) })
exten => 1X.,n,Hangup ()

include => context 3

exten => 123,1,Answer ()

exten => 123,n,SayDigits (123${CALLERID (num) })
exten => 123,n,Hangup ()

[111]

Download at Boykma.Com

The Dialplan

The above dialplan is sorted internally by Asterisk shown as follows, and you can
see that though the included contexts are at the top and in the middle, the local
context is read first, then the included contexts are read in the order that they were
added. Hence, in this case, a dial string of 122 would be matched by the _1x. pattern
before the included contexts are searched.

'123"' => 1. Answer ()
2. SayDigits (123${CALLERID (num) })
3. Hangup ()
'IX. => 1. Answer ()
2. SayDigits (${EXTEN}S{CALLERID (num) })
3. Hangup ()
Include => 'context_ 2
Include => 'context 3!

If you have a catch-all pattern in your dialplan, consider putting it into
\J . . .
~ a separate context. You can then use the include directive to append
that context to the end of the active context, thus ensuring that all of
the other pattern matching is attempted first.

One of the most powerful tools you will use on the Asterisk command line is
dialplan show <extens@<contexts. For example:

dialplan show l22@context 1

This will show you the matching order that Asterisk will use for the given extension
in the specified context, and if there are matches in any included contexts, those
contexts will be explicitly identified.

Finally, in a context you may have a switch statement, which includes the dialplan
of an external system into the local dialplan. In essence, it's an include for remote
systems. Though typing dialplan show will always show the switch statement

at the bottom, the defined context on the remote system is searched after the local
context on your system and before any local included contexts! So again, you have to
be very careful as to what is the context on the remote system as this will be searched
before your included contexts.

The syntax of the switch state is as follows:
switch =>IAX2/user: [key]@server/context

The user and key are defined in the called server's iax.conf file, and the context is,
of course, in the server's dialplan.

[12]

Download at Boykma.Com

Chapter 1

Why use contexts?

In our examples so far we could have achieved the desired results very easily
without the use of multiple contexts. The simple functionality we have looked at
could be carried out in a single, all-encompassing context. In practice, this approach
could be applicable for systems with a very limited number of users and trunks, and
with very restricted functionality, as there may not be a need to restrict the calling
habits of a subset of users.

Use of contexts becomes desirable when we need to offer different options to
different users. This is likely to be most applicable in medium and large companies,
where you may have "users" ranging from the CEO down to an emergency phone
in a lift. However, it can also be the case in smaller companies, where you might
want to restrict home workers from making international calls for instance.

When you get many different types of users, writing a distinct dialplan for each
becomes problematic. The sheer size and complexity of the dialplan will make code
management very complicated.

To simplify things, we first need to think about what makes the dialplan for each
extension different. Then we need to think about what remains the same for each
extension, as this needs to be made to work as well. What we often find is that most
of these differences can be stored and called in two main ways:

e The user's context

e Variables linked to that user
We will come to variables shortly, but the grouping of extensions into contexts
allows us to separate concise and distinct functions from each other. In doing so, we

can control very tightly which contexts are used in each scenario, and also implement
one "master" copy of each distinct function, aiding maintenance of the code.

Call barring made simple

To illustrate, let's expand our context a bit and use call barring as an example. We
will initially have three levels for this example —local, national, and international.

These are defined as follows:

e Any number starting with a 1-9 is local
e Anything starting with a 00 is international.

¢ Anything else starting with a 0 is national or a mobile number.

[13]

Download at Boykma.Com

The Dialplan

This is a simplified example, and uses the UK format of dial prefixes.

We have in this example three contexts —local num, national_ numand
international num. These would correspond to the levels of access we have
decided on for our users. For example, an executive phone would be allowed access
to all numbers whereas a phone on the shop floor may only be allowed access to
local numbers.

We will create the three contexts shown as follows. All we are doing in our example
is reading back 1, 2, or 3 to indicate the pattern that has been matched followed by
the number dialed—$ { EXTEN].

[local num]

Exten => Z.,1,Answer ()

Exten => Z.,n,SayDigits (1${EXTEN})
Exten => Z.,n,Hangup ()

[national num]

Exten => 0Z.,1,Answer ()

Exten => 0Z.,n,SayDigits (2${EXTEN})
Exten => 0Z.,n,Hangup ()
[international num]

Exten => 00X.,1,Answer ()

Exten => 00X.,n,SayDigits(3${EXTEN})
Exten => 00X.,n,Hangup ()

For each context we could write an ordered list to cover all patterns, but it is much
neater to create a master context for each user. For example:

[locall]
Include => local num

[nationall
Include => national num

Include => local num

[international]
Include => international num
Include => national num

Include => local num

Therefore, in the previous example, a user with the national context can dial
a normal national number, but not an international number. A user with the
international context has the ability to dial both numbers.

[14]

Download at Boykma.Com

Chapter 1

This is a pretty simple example with just three level of access, but the modular
nature due to the use of contexts allows us to expand it very quickly and easily. For
example, we have a user 1000 (our CEO) and he can dial internationally. We also
have 1098 and 1099, which are users on the shop floor, and can dial reception and
the emergency services.

In this example, we give our CEO a context of [supauser],while the shop floor has a
context of [emergencyuser].

The [supauser] context has to be able to dial everything, so it looks like this:

[supauser]

include => premium num ; allows dialing to premium rate numbers
include => international num ; allows international dialing
include => national num ; allows national calls

include => mobile num ; allows calls to mobile phones

include => local num ; allows local rate calls

include => free num ; allows free calls such as 800 or
operator services

include => internal num ; allows the calling of extensions
include => emergency ; allows calls to the emergency services
include => default ; allows access to system features

The shop floor just has the following context:

[emergencyuser]
include => emergency ; allows calls to emergency services reception.

As you can see, we can mix and match these contexts to cover many different types
of extensions. Although you may be asking, "Will this really save me time?" well, let's
look at two examples. Firstly, our supplier reduces the cost of UK 0870 numbers to
free in the evenings as has happened in the UK with BT (British Telecom). Secondly,
we also want the shop floor phone (1099) to be able to dial extensions and toll free
calls, but not change the dialplan for 109s.

We will deal with the simplest of these extensions (1099) first. All we need to do is
change the context associated with this user to a new context called [freeuser]:

[freeuser]

include => free num ; allows calls to free numbers

include => internal num ; allows the calling of extensions
include => emergency ; allows calls to the emergency services
include => default ; allows access to system features

This is a fast and easy change, which will have no effect on other shop floor users.

[15]

Download at Boykma.Com

The Dialplan

And to the change to 0870 numbers, this once again can be put into effect very
simply. The only change is that evening and weekend calls are now free. Therefore,
we could putitinto a [free] context. Although, it isn't always free. It is free only
at weekends which would not be suitable. Hence, for this we use the GotoIfTime
application, which sets the context, extension, and priority in the channel based on
the system time, day, date, and month supplied by the OS.

By adding the following to the free context, users can now dial 0870 numbers at the
defined times.

exten => 0870XXXXXXX,1l,GotoIfTime(17:59-08:00,mon-£fri, *,*?national,
${EXTEN}, 1)
exten => 0870XXXXXXX,1l,GotoIfTime (*,sat-sun,*,*?national, ${EXTEN},1)

In this case, we have made a change for all users who also have a context allowing
both local and free calls (as their context includes the free context).

Time and day call routing

The GotoIfTime () application can introduce some powerful functionality into

your dialplan if used properly. An example that follows is for a support company
where calls are routed to the call centre or staff member on call at a specific time. The
customer had centers round the globe and we routed the calls to whichever center
was open at that time of day.

[folthesun]

;This section sets the constants and variables for numbers and times
;Nine timezones are defined to allow for 4 a day and sat and sun
working

;At present there are 6 destinations for NA AU and EMEA

exten => s,1,set(_ tzonel=00:00-07:59)

exten => s,n,set(_ tzone2=08:00-17:30)

exten => s,n,set(_ tzone3=17:31-23:59)

exten => s,n,set(_ tzone4=17:31-23:59)

exten => s,n,set(_ tzone5=00:00-23:59)

exten => s,n,set(_ tzone6=00:00-23:59)

exten => s,n,set(_ tzone7=00:00-23:59)

exten => s,n,set(_ tzoneB8=00:00-23:59)

exten => s,n,set(_ tzone9=00:00-23:59)

exten => s,n,set(destl1=01234123456) ;destl emea pager

exten => s,n,set(dest2=001765412345) ;dest2 na pager

exten => s,n,set(dest3=006165453457) ;dest3 au pager

[16]

Download at Boykma.Com

Chapter 1

;jdest4 uk_no
;dest5 na_no
;dest6 au_no

;dialing context

exten => s,n,set(dest4=08441231234)

exten => s,n,set(dest5=001744519651)

exten => s,n,set(dest6=006118954654)

exten => g,n,set(dialpre=9) ;dialing prefix
exten => s,n,set(dialcon=international)
exten => g,n,Goto(ftstimeing, s, 1)
[ftstimeing]

7

;This sections runs though the days of the week and checks the time

;against DOW and time

i
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten
exten

7

s,1,GotoIfTime (${tzonel}|mon|*|*?destl, 1)
s,n,GotoIfTime (${tzone2} |mon|*|*?dest4, 1)
s,n,GotolfTime (${tzone3} |mon|*|*?dest5, 1)
s,n,GotolfTime (${tzone4} |mon|*|*?dest5, 1)
s,n,GotoIfTime (${tzonel}|tue|*|*?destl, 1)
s,n,GotoIfTime (${tzone2}|tue|*|*?dest4, 1)
s,n,GotolfTime (${tzone3} |tue|*|*?dest5, 1)
s,n,GotolfTime (${tzoned} |tue|*|*?dest5, 1)
s,n,GotoIfTime (${tzonel}|wed|*|*?destl, 1)
s,n,GotoIfTime (${tzone2}|wed|*|*?dest4, 1)
s,n,GotolfTime (${tzone3} |wed|*|*?dest5, 1)
s,n,GotolfTime (${tzoned} |wed|*|*?dest5, 1)
s,n,GotoIfTime (${tzonel}|thu|*|*?destl, 1)
s,n,GotoIfTime (${tzone2}|thu|*|*?dest4, 1)
s,n,GotolfTime (${tzone3} |thu]|*|*?dest5, 1)
s,n,GotolfTime (${tzoned} |thu]|*|*?dest5, 1)
s,n,GotolfTime (${tzonel}|fri|*|*?destl, 1)
s,n,GotoIfTime (${tzone2}|fri|*|*?dest4,1)
s,n,GotolfTime (${tzone3} |fri|*|*?dest5,1)
s,n,GotoIfTime (${tzoned}|fri|*|*?dest5,1)
s,n,GotoIfTime (${tzone5} |sat|*|*?destl, 1)
s,n,GotoIfTime (${tzone6}|sun|*|*?destl, 1)

;Fall through point

exten => s,n,Goto(destl,1)

7

;Dialed using the Local channel so call handling is observered

7

exten => destl,1,Noop(Calling ${destl})

[171]

Download at Boykma.Com

The Dialplan

exten => destl,n,Dial(Local/${dialpre}s{desti}e$s{dialcon})
exten => destl,n,Hangup ()

exten => dest2,1,Noop(Calling ${dest2})
exten => dest2,n,Dial(Local/${dialpre}s{dest2}es{dialcon})
exten => dest2,n,Hangup ()

exten => dest3,1,Noop(Calling ${dest3})
exten => dest3,n,Dial (Local/${dialpre}${dest3}@${dialcon})
exten => dest3,n,Hangup ()

exten => dest4,1,Noop(Calling ${dest4})
exten => dest4,n,Dial (Local/${dialpre}${desta}@s{dialcon})
exten => dest4,n,Hangup ()

exten => dest5,1,Noop(Calling ${dest5})
exten => dest5,n,Dial (Local/${dialpre}${dest5}@${dialcon})
exten => dest5,n,Hangup ()

exten => dest6,1,Noop(Calling ${desté6})
exten => dest6,n,Dial (Local/${dialpre}${dest6}@s{dialcon})
exten => dest6,n,Hangup ()

exten => 1i,1,Hangup ()
exten => t,1,Hangup ()
exten => h,1,Hangup ()

This can be expanded to include public holidays, if required. It can be possible to
handle many years' public holidays in one line. For example, between the years 2009
and 2016, the UK's summer public holiday falls on the dates between the 25th and
31st of August and is always a Monday. Therefore, we have something like this:

GotoIfTime (*,Mon,25-31,Aug?destl, 1)

This will catch all UK summer public holidays, and as there are no other Mondays
in August clashing with these dates, it's a set-and-forget for many years (just don't
forget to change it after 2016!). The same goes for the majority of other public
holidays except for Easter.

For these variable dates, we can resort back to the internal database to store the
details and then use the GotoIf () application to check if the date is a holiday.

Variables

Variables are key to making the dialplan and system work in a manner that a user
expects. The user would expect the system to know everything they have set on their
extension, and not have to enter codes or dial special access numbers.

[18]

Download at Boykma.Com

Chapter 1

There are a number of places in which variables can be stored including the dialplan,
sip.conf, iax.conf, chan DAHDI.conf (in versionl.6), and the Asterisk database
(AstDB). For example, if we have a number of static dial strings we wish to store for
each type of call and carrier we use, and then use them in a number of sections, the
[globals] section of the extensions. conf file is the obvious place to declare them.
If we wish to set a variable when a call is initiated from a SIP device, external caller
ID or account codes are a good example, the setvar command in the sip. conf file is
ideal for that purpose. Just remember that it won't work for calls sent to that device
just when the calls are made. Finally, the AstDB is great for variables that are more
transient in nature, such as call counts.

Inheritance of channel variables through
the dialplan

On occasion, when using complicated dialplans you may wish for a variable's
value to be kept as the call progresses. This is achieved by adding a _ [underscore]
ora __ [double underscore] before the variable name.

A single _ will cause that variable to be inherited into the channel that started from
the original channel, for example:

Set (_namel=valuel)

If you want the variable to be inherited to all child channels indefinitely, then
add __ before the variable name. For example:

Set (_ name2=value2)

This should not be confused with setting the variable with the g option, as this sets it
as a global variable. Doing so makes the variable available to all channels globally.

So, you may ask "why might we store dial strings as a variable?" The simple reason
is that it allows a minimal amount of code for dialing all numbers, but still allows for
different classes of restriction, by which we mean allowing different users to have
different restrictions in what they can and cannot dial.

To pass these variables we will use a macro. Macros are like a template that we

can use for repeated tasks, and they allow the passing of variables in an ordered
fashion to the macro context. The call will jump to the s extension. The calling
extension, context, and priority are stored in $ {MACRO_EXTEN}, $ {MACRO_CONTEXT},
and $ {MACRO_PRIORITY} respectively. Arguments passed are accessed as $ {ARG1},
${aRG2}, and so on within the Macro. While a Macro is being executed, it becomes
the context, so you must be able to handle the h, i, and t extensions if required
within that context.

[19]

Download at Boykma.Com

The Dialplan

Let's build our small macro dialplan. We have a variable defined in the globals
section of the extensions. conf file as follows:

[globals]

INT CALL=IAX2/username@peer out/

INT CALL ID=01234123456 ; default international callerID
INT CALL LIMIT=5 ; Limit on the number of calls

In the context that we use for dialing, we have:

; International long distance through trunk
exten => 90.,1,Macro(outdial,${INT CALL})

Here, we have defined the macro we are going to pass the call to, along with a single
variable we defined in the globals section (the value of the calling extension can be
retrieved within the macro by using $ {MACRO_EXTEN}).

The macro context looks like this:

[macro-outdiall
exten => s,4,Dial (${ARG1}${MACRO EXTEN:1},180)

This is the same as the dial string:

exten => s,4,Dial (IAX2/username@peer out/01234123456,180)

We have seen that we can pass one dial string, but let's now pass other variables to
the Dial () application, such as a backup route for outgoing calls, and the caller ID
we want to use for the call.

exten => 90.,1,Macro(outdial,${INTCALL}, ${INT CALL ID}, ${INT CALL
LIMIT})
[macro-outdiall
exten => s,1,Set (GROUP () =OUTBOUND_ GROUP) ;Set Group
exten => s,2,GotoIf ($[${GROUP_ COUNT (OUTBOUND GROUP)} > ${ARG3}]?103)
;Exceeded?
exten => s,3,Set (CALLERID (num)=${ARG2})
exten => s,4,Dial (${ARG1}${MACRO EXTEN:1},180)

Now it's time to bring some . conf file variables into the mix. Using the setvar
facility in the sip.conf, iax.conf and chan_dahdi . conf files, we can set variables
specific for every user such as unique caller ID, call limits, whether we want to
record the call, account codes. Basically, anything that will help you handle calls
more efficiently.

setvar=account code=2206
setvar=callidnum=01234123456
setvar=tenantID=2

[20]

Download at Boykma.Com

Chapter 1

One problem using . conf files is that the relevant channel module needs
* to be reloaded after a change, and in the case of DAHDI, Asterisk would
need to be restarted. This isn't too much of an issue but the need can be
g removed by using the AstDB for storing commonly changed settings,
such as caller ID and recordings.

You may think that all this variable use is over-complicated, but consider a system
that supports multiple tenants. Using these techniques, you will only need one
dialplan for multiple tenants instead of one per tenant. Simply set the tenantID in
the relevant . conf file and then store the tenants' features in the globals section
of the dialplan and in the AstDB, and all calls will go out as that tenant group. The
concept is the same for other scenarios, such as departments that require cross
charging of telephone costs.

Using the AstDB

Setting and retrieving variables in the AstDB is very simple and achieved through
the use of the set () application. Variables can exist in splendid isolation or be
grouped into families. The syntax for setting a variable is:

Set (DB (family/variable)=value)
Retrieving the variable's value is equally as simple:

Set (result=${DB(family/variable) })

So, let's have a look at how we can implement a simple multi-tenant dialplan using
multiple variable stores:

INT CALL1=IAX2/username@peer out_ 1/

INT CALL2=IAX2/username@peer out_ 1/

INT CALL_LIMIT1=5 ; Limit on the number of calls

INT CALL_LIMIT2=5 ; Limit on the number of calls

exten => _90[1-2] XXXXXXXXX,1,Set (INTCALL=TNTCALL${tenantID})
exten => 90[1-2]XXXXXXXXX,n,Set (INT CALL LIMIT=INT CALL
LIMITS{tenantID})

exten => 90[1-2]XXXXXXXXX,n,Macro (outdial, ${INTCALL},
${callidnum}, ${INT CALL LIMIT})

As we can see, we have been able to cut down the amount of code and make it
universal for different types of users and systems. Using a macro lets us pass an
ordered list of arguments. It is easiest to think of macro arguments as a list of
variables since they are handled the same way.

[21]

Download at Boykma.Com

The Dialplan

Due to the way macro is implemented, it executes the priorities
. contained within it via a sub-engine, and a fixed per-thread memory
% stack allowance. Macros are limited to seven levels of nesting. It can
" be possible that stack-intensive applications in deeply-nested macros
could cause Asterisk to crash. Take this into account and be very careful
when nesting macros.

Dialplan features and additions

In this section, we are going to look at the DEVSTATE () function and the System()
application. We will see how we can check and change the "status" of devices with
the DEVSTATE () function and use the system application to cause scripts on the
server to be run.

func_devstate

The func_devstate application allows the status of a peer to be known before you
dial it. This is very useful in many applications. We will cover a few of them here
but you will be able to find many more.

The func_devstate application is part of Asterisk 1.6, but Russell Bryant
(of Digium) has a back-ported version for Asterisk 1.4. This can now be found at:

http://svn.digium.com/community/russell/asterisk-1.4/func devstate-
1.4/func_devstate.c

For most Linux distributions, installing the function is pretty simple:

cd /usr/src/asterisk/funcs

wget http://svn.digium.com/community/russell/asterisk-1.4/func_ devstate-
1.4/func_devstate.c

cd ..
make clean
./configure

make menuselect

Choose option -> 6. Dialplan Functions
Then make sure that you have an entry like 8.func devstate
make

make install

[22]

Download at Boykma.Com

Chapter 1

If under Dialplan Functions, the DEVSTATE () function does not
show up, you will need to edit the menuselect-tree to add it.

% <member name="func_ devstate" displayname="Gets or sets
A adevice state in the dialplan" remove on change="funcs/
func devstate.o funcs/func devstate.so">

Then compile Asterisk as shown previously.

What can we use the DEVSTATE() function for?

The DEVSTATE () function is versatile, allowing us to check and/or set the status of
a device, as its name suggests. One very common use is to activate phone lamps,
showing users if they have set a feature such as DND or call forwarding. In the
following examples, we will look at both setting and checking methods:

The function reports on, or can set, the following states:

NOT INUSE
INUSE

BUSY
INVALID
UNAVAILABLE
RINGING
RINGINUSE
ONHOLD

Outgoing trunk selection

The application can be used here to check that an outgoing peer is "available" and
not "down", before you send a call to it. This is useful if you have peers or remote
systems that are on variable quality connections.

exten => 90.,1,Macro(outdial,${PRIDIAL},${INT CALL ID},${INT CALL LIM
IT}, ${BAKDIAL}, ${PRIPEER})

[macro-outdiall

exten => s,1, Set (GROUP ()=0UTBOUND GROUP) ;Set Group

exten => s,2,Gotolf ($["${DEVSTATE (${ARG5}) } "="UNAVALIABLE"] ?s,7)
exten => s,3, GotoIf ($[${GROUP_ COUNT (OUTBOUND GROUP)} > ${ARG3}]?103)

exten => s,4, Set (CALLERID (num)=5${ARG2})

exten => s,5, Dial (${ARG1}${MACRO EXTEN:1},180)
exten => s,6, Hangup()

exten => s,7, Dial (${ARG4}${MACRO EXTEN:1},180)
exten => s,8, Hangup()

exten => s,n, Noop(call Limit exceeded)

[23]

Download at Boykma.Com

The Dialplan

This example is an expansion of our previously used macro and has a couple of
extra arguments passed to it. This makes it very flexible, as the backup peer can
be different for each dialed number.

Calling extensions

The application lets you see if extensions are busy or "out of service" before calling
them. This can be useful for handsets that support call waiting, but you don't want
to fully disable it for all calls. Before calling the extension, you can check to see if
the extension has call waiting enabled and then, depending on the result, check the
device status as follows:

exten => 2XXX,1l,Macro(dialext)

[Macro-dialext]

exten => s,1,NoOp (SIP/${MACRO EXTEN} has state ${DEVSTATE (SIP/$
{MACRO EXTEN}) })

exten => s,n,Set (CW=3${DB(CW/${MACRO EXTEN}) })

exten => s,n,Gotolf ($["${CW}"="YES"]?dial)

exten => s,n,Gotolf ($["${DEVSTATE (SIP/${MACRO EXTEN}) }"!="NOT INUSE"]?
s-BUSY, 1)

exten => s,n(dial),Dial (SIP/${MACRO EXTEN},35)

exten => s,n,Goto(s-BUSY, 1)

exten => s-BUSY,1,Voicemail (${MACRO EXTEN},b)

exten => s-BUSY,n,Hangup ()

In the previous example, we have used the internal database to set the flag to say if
call waiting is enabled or not. If call waiting is anything other than YES, the status
of the extension will be checked, otherwise the DEVSTATE isn't checked and the
extension is just called. As we will see next, we can expand this to light a BLF (Busy
Lamp Field) key as well, to give a visual indication to users of the device status.

Setting lights

We can also use the DEVSTATE () function to set BLF lights on and off, a very simple
but highly effective feature. This is particularly helpful if you are using the dialplan
for setting call forwards or DND. It can also show if a call center agent is logged in
or not, on their phone.

To illustrate this functionality, we have a very simple example showing how to turn
the light on and off. It uses one number to toggle the light status and is not specific
for the particular phone —all phones dial the same number and it is the CHANNEL
variable, which is used to set it for a specific phone. In this example, we have two
hints—4078 and 4071, and these are linked to extensions 5078 and 5071.

[24]

Download at Boykma.Com

Chapter 1

Using this co

de and adding additional code to set the database key for call waiting

(as we have already covered) would give the phone user a visual indication as to
whether call waiting is set or not.

exten => 4071,hint,Custom:1ight5071

exten =>
exten =>
exten =>
exten =>
exten =>
INUSE)

exten =>

exten =>
NOT_INUS

4078, hint,Custom:1ight5078

1236,1,Goto(1236-${DEVSTATE (Custom:1ight${CHANNEL:4:4}) }|1)
1236-UNKNOWN, 1, Goto (1236-NOT_INUSE|1)
1236-NOT_INUSE, 1,Noop (Turn ${CHANNEL:4:4} light on)
1236-NOT_INUSE,n, Set (DEVSTATE (Custom:1ight${CHANNEL:4:4}) =

1236-INUSE, 1,Noop (Turn ${CHANNEL:4:4} light off)

1236-INUSE, n, Set (DEVSTATE (Custom:1light {CHANNEL:4:4}) =
E)

By using userevent, you can also send out manager events to update the Flash
Operator Panel. The following would set the cw flag for the Flash Operator Panel
for our extension and change the icon to reflect the status.

exten =>
CW*Value

Boosting
We're going t

1236-NOT_INUSE, 2,UserEvent (ASTDB|Channel: ${CHANNEL} *Family:
: SET)

There is also a version of DEVSTATE () called EXTSTATE (). Itisa
modified version of the DEVSTATE () function that returns the state of
an extension, rather than the state of a device. This means you can write
dialplan logic based on the state of an extension (in use, ringing, on hold,
and so on). The extension just needs to have a hint so we can determine
which devices to check.

outgoing call capacity
o have a look at how DEVSTATE () has been used to address an unusual

situation. A call-centre customer wished to temporarily increase their outgoing call
capacity, in this case by 20 concurrent calls, to cater for a particular project. However,
in their location, with their budget and given the temporary need for extra capacity,

the only effec

tive means of boosting bandwidth is to utilize multiple ADSL circuits.

In other words, SDSL and leased line circuits were too costly for consideration.
Therefore, there was a need to bond multiple ADSL circuits together within
Asterisk, in order to provide a single high-bandwidth circuit for outbound calls.

[25]

Download at Boykma.Com

The Dialplan

It may seem obvious, but when calculating call capacity with ADSL circuits, the
figure we're interested in is the lower of the upload/download speeds. It doesn't
matter if you have a superfast 20 MB DSL circuit, chances are that you only have an
uplink speed of 800 kbps or less. It must also be remembered that once traffic exceeds
50% of the link speed, collisions and latency are likely to become an issue and must
be addressed. This gives you a theoretical limit of up to 10 uncompressed calls per
circuit if you're really lucky. Of course, with the GSM codec you can get a lot more,
but at the cost of audio quality, which your customer is unlikely to accept. They
expect PSTN quality and nothing less. If bandwidth utilization is on the borderline
with an uncompressed codec, it can be advantageous to use a commercial (non-free)
codec such as G729, which is obtainable from Digium.

Using multiple broadband lines

Using the criteria already discussed and assuming a 500 kbps uplink speed, it was
determined that four broadband circuits were needed. This may sound expensive,
but in reality it's not, when you consider that the alternative was 20 channels of a PRI
(ISDN 30), which worked out at twice the cost of four PSTN lines with broadband.
As we'll see later in the sales appendix, a major benefit of VolIP is that the customer
is paying much less for line rental. This solution only reinforces that benefit.

We are going to describe a solution that used four broadband circuits, but another
advantage of this approach is that it is very scalable. To illustrate, a system has been
set up for a charity in the UK that had 75 agents placing thousands of calls a day on
just eight broadband circuits.

M This example was tested and proven using Asterisk 1.4.19.2, and should
work with releases up to 1.4.19.2 - it's operation cannot be guaranteed in
other versions.

Configuration overview

Once the circuits are delivered, you will end up with four routers connected to the
broadband service of your choice. Each router will have a unique IP address. In our
case, we shall assume they are as follows:

192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.4

[26]

Download at Boykma.Com

Chapter 1

We will also assume that the VoIP ITSP has multiple IP addresses that you can
connect to, though if not, you can probably do some clever address translation
in the routers.

Setting up the routing in Linux
Let's assume our VoIP ISP has provided us with the following external IP addresses:

88.88.88.81
88.88.88.82
88.88.88.83
88.88.88.84

Within Linux, you can easily set up different gateway addresses for a given
destination. The file that manages the gateways is normally called ifup-routes
in the /etc/sysconfig/network-scripts directory.

To configure the gateways, we append the following to the ifip-routes file:
/sbin/route add 88.88.88.81gw 192.168.1.1
/sbin/route add 88.88.88.82 gw 192.168.1.2
/sbin/route add 88.88.88.83 gw 192.168.1.3
/sbin/route add 88.88.88.84 gw 192.168.1.4

Taking the last entry, what we're saying is that for all traffic to 88.88.88.84, route it
via the router at 192.168.1.4.

If you reboot and run the command route -n in a terminal session, you'll see these
routes in place.

Configuring Asterisk

We now turn our attention to the Asterisk configuration. When we make a call, we're
going to keep count of how many calls we have on a broadband line, so that when
the circuit is "full", we can move on to the next available one.

Firstly, in the extensions. conf file, we need to declare a variable that sets the
maximum concurrent calls we will allow through any one router.

MAXVOIPCALLS=5 ; Maximum Calls we allow over IP (outbound)

[27]

Download at Boykma.Com

The Dialplan

We've previously set up four entries in the iax. conf file called iaxlinel through
to iaxline4. They have identical entries, with the exception on the host= line. Here
we assign the appropriate external IP address, that is, 88.88.88.81 for iaxlinel
and so on.

Now, we need to declare the IAX channels as follows:

AIXVOIPOUT = IAX2/iaxlinel
AIXVOIPOUT1 = IAX2/iaxline2

As expected, we use a macro to manage the call routing. The example below only
shows two lines for the sake of brevity.

[macro-voiptrunk]

exten => s,1,Noop (Number of Broadband calls)

;Use devstate to test the availability of the trunks. You could put
some code in, to use an alternative i1f they are off line

exten => s,2,Noop (Trunk 1 ${DEVSTATE (${AIXVOIPOUT})} -> ${GROUP
COUNT (VOIPTRUNKS@list1) })

exten => s,3,Noop (Trunk 2 ${DEVSTATE (${AIXVOIPOUT1})} -> ${GROUP_
COUNT (VOIPTRUNKS@list2) })

exten => s,4,G0Tolf ($[${GROUP COUNT (VOIPTRUNKS@listl)} <
${MAXVOIPCALLS}]?10:20)

;Have we exceeded the max calls per trunk? If so, jump to Extension
20 and use second trunk

exten => s,10,gotoif ($[${DEVSTATE (${AIXVOIPOUT}) } =

UNAVAILABLE] ?20:11)

;Here we test to see if the trunk is available, if it's gone off-line,
we use the second trunk

exten => s,11,Set (GROUP(1listl)=VOIPTRUNKS) ;increment the usage count.
exten => s,12,noop (${DEVSTATE (${AIXVOIPOUT}) })

exten => s,13,Noop (Trunk 1-> ${GROUP_ COUNT (VOIPTRUNKS@listl) })

exten => s,14,Dial (${AIXVOIPOUT}/${MACRO EXTEN})

exten => s,15,Goto(s-${DIALSTATUS}, 1)

exten => s5,20,GoToIf ($[${GROUP COUNT (VOIPTRUNKS@list2)} <
${MAXVOIPCALLS}] ?21:40)

exten => s,21,S8et (GROUP(1list2)=VOIPTRUNKS)

exten => s,22,Noop (Number of Broadband calls)

exten => s,23,Noop (Trunk 2-> ${GROUP_COUNT (VOIPTRUNKS@list2) })
exten => s,24,Dial (${AIXVOIPOUTL1}/${MACRO EXTEN})

exten => s,25,Goto(s-${DIALSTATUS},1)

exten => s,40,Congestion(15) ; No more lines left

[28]

Download at Boykma.Com

Chapter 1

Explanation of the macro

Priorities "2" and "3" use the DEVSTATE () function to test the availability of the
broadband lines. If a line is down, UNAVAILABLE will be returned. At "4", we look

to see if we've exceeded max calls on this line. If we haven't, we'll place a call on the
first router, otherwise go to the next. "11" records the in-use count and increments
it for the given router (listl).

What happens, overall, is that the first 5 calls (set by the global MAxvOoIPCALLS) Will
go via router 1, the sixth will go via router 2. If in the meantime a call is dropped
from router 1, the next call placed will go back to router 1, even if other calls are
ongoing on router 2.

Finally, we need to add a call to the macro in our dialplan:

[outbound-nationall
exten => 0Z.,1,NoOp(national call)
exten => 0Z.,2,Macro(voiptrunk)

The above technique is scalable. You can add as many broadband lines as you need.
The end result is that you can say to your customer, "want more outgoing capacity?
Just add another DSL line". However, it must not be forgotten that there may be
more stable solutions such as SDSL and leased lines, depending on location.

Downsides

The above example works really well for outbound calling, but not so well for
inbound. If you own the server the customer is connecting to, then you can reverse
the logic at your end. If you don't, then all you can do is allocate one router for
inbound (register via an inbound router) and the rest for outbound.

System() application

The system() application allows Asterisk to run Linux commands and shell scripts.
What we will look at here is a simple hotdesking deployment script for asterisk.
This type of deployment method is used by all commercial PBXs and is needed for
any enterprise deployment of Asterisk. Hand editing filenames or even configuring
phones via their web GUI will not be accepted by a customer or end user.

[29]

Download at Boykma.Com

The Dialplan

The dialplan is very simple. The user dials a code from his/her handset and is
asked to enter a four-digit number (their hotdesk ID). The dialplan then stores this
as a variable. It also sets the caller ID and the IP address for the set and passes these
to the script.

[hotdesk in]

exten => s,1,Answer

exten => s,n,Playback (privacy-thankyou)

exten => s,n,Read (MY EXTEN, access-code, 4)

exten => h,1,Set (MY IP=${SIPPEER (${CALLERID (num)}:ip) })
exten => h,2,system(/usr/local/sbin/exten in ${MY EXTEN}
${CALLERID (num) } ${MY IP})

With these three variables, the script then knows the handset's existing number,
IP address, and the number it wants to be.

In addition, the script then performs an Address Resolution Protocol (ARP) lookup
on the IP address to find the phone's MAC address. It needs this because, as in the
example, we are using the phones config file in the format of <MAC-ADDRESS>. cfg,
and we configure the sets via TFTP (Trivial File Transfer Protocol). Hence, as we
know the MAC address we can copy the config files to the correct name.

Firstly, we will copy the old <MAC-ADDRESS>. cfg to a different file name. Then
we copy the config file for the extension number we wish the phone to be

using the MY EXTEN variable we have passed to the script to define it to our new
<MAC-ADDRESS>. cfg. Now when the set reboots, it will pick up the new file.
However, we want this to be automatic and with as many handsets as it can have.
The sip notify command does so when configured in the sip notify.conf file,
in the case of Aastra handsets, as follows:

[aastra-check-cfg]
Event=>check-sync
Content-Length=>0

The following command will cause the phone to check the config file for changes
and reboot if any change is found:

/usr/sbin/asterisk -rx "sip notify aastra-check-cfg ${CALLERID}"

When it reboots, it will pick up its new configuration. By using scripts such as the
previous one, you can speed up "moves, adds, and changes" and cut out the need

for engineers to put out or replace handsets. It can also be used to provide a form of
hotdesking with the user dialing a code to set the handset as theirs, and then log out
when they leave (copying back the previous config), thus returning the phone to its
previous state.

[30]

Download at Boykma.Com

Chapter 1

Summary

In summary, we have looked at how to break down your dialplan into small,
manageable contexts or objects. These can then be included into the dialplan to
create a system with the flexibility to match any commercial PBX. We also looked

at improving the security of the dialplan such that it is easy to manage who can dial
where in an understandable way.

We looked at the many different ways that variables can be stored in the system and
called upon when required, as well as seeing how they can interact with macros to
make the dialplan more streamlined. Here we used one macro for many extensions.

We looked at the DEVSTATE () function and the uses that it can be put to. These are
not just (as it initially seems) for checking the status, but also a way to set the status
and light a BLF key to show a feature is set.

We looked at time and day call routing, and how it can be used to route calls based
on time and day. We also looked at the clever use of date ranges, so that we can
future-proof our dialplans for holidays for many years to come.

And finally we looked at the system () application and how this can be used for
easing the deployment of handsets in an enterprise solution. In the next chapter,
we shall focus on exploring network considerations.

[31]

Download at Boykma.Com

Download at Boykma.Com

Network Considerations
when Implementing Asterisk

The reasons for choosing a Voice over IP (VoIP) telephone system in preference to a
traditional PBX are many, as evidenced by the growth of IP-capable PBXs in larger
businesses for some years now. One of the reasons is the opportunity it affords a
business to maximize the investment it has made in its IT infrastructure. Rather than
create and maintain one mechanism for transporting computer communications
traffic, and another for transporting voice communications traffic, a company can
simplify matters by carrying all communication traffic on a single, IP-based network.

However, putting all such traffic through one channel means that it is more important
than ever to ensure it is up to the task. The irony is that, should you have to choose
between an IP data network and an analog voice network based on stability, then

the likely choice would be the voice channel. After all, most people have higher
expectations of telephone infrastructure than of computer networks — they expect the
phone to work, every time. Therefore, over time, pure voice communication transport
mechanisms (initially analog but for some time now digital in nature) have developed
with the emphasis very much on stability and availability above all else. This has
meant that simplicity is preferable, and change is slow to occur. Of course, when
designing a network with stability as the prime goal, having only one type of traffic

to carry helps enormously.

But the voice channel is not suitable for network traffic, unless you hanker for a
return to modems on every desk. The IP-based Ethernet network, on the other
hand, is now eminently capable of being used for voice traffic. Indeed, some of the
features of IP networks, such as the ability to choose between multiple routes on the
fly, introduce elements of redundancy that have previously been difficult and/or
expensive to add to voice networks.

Download at Boykma.Com

Network Considerations when Implementing Asterisk

In this chapter, we will look at the considerations you need to bear in mind when
introducing a Voice over IP system to a company. We will discover what makes
the difference between giving your customer a telephone setup that rivals a good
circuit switched system for call clarity and uptime, while improving the features
and capabilities many fold. After all, most people will not judge your shiny new
phone system a success if they cannot simply pick up the phone, dial a number,
and have a conversation.

Centralized and distributed installations

Let's start with a brief definition of centralized and distributed installations. A
centralized installation (sometimes called a "System" installation) is where there is

a physical installation of Asterisk onsite, and by that we mean connections from the
phone are on a high speed network (Cat5 and so on) where bandwidth and latency
should not be an issue. A distributed, or hosted installation, is where the end user is
using a remote server to handle the PBX functions. Typically, such installations have
a small number of IP phones/adapters onsite, for instance where a small remote
office is required to connect to the company's centralized PBX installation. This term
is also used to describe situations where the customer doesn't have a PBX of their
own, and rents PBX services from someone else.

Centralized installations

With the local PBX setup, which is a centralized installation, unless you have
major problems with your LAN there should be no issue with communication
between endpoints, such as handsets, and the PBX. If you find that handsets are
losing connectivity, then you need to start investigating why this is the case before
you proceed any further with implementing or enhancing the system. Otherwise
inefficiency of the network is going to cause you a multitude of issues further
down the line.

Distributed solutions

We're assuming here that you're going to be running an Asterisk installation at
some central site and servicing the remote phone's requests. This may be a billable
service you are supplying or a centralized system at your customer's premises that
is servicing multiple locations.

With such a setup, a major concern is bandwidth, particularly if you have quite

a large number of extensions on a site with no PBX. The reason for this is simple,
each call in a hosted environment, whether internal or external, will be required to
traverse the WAN to the central PBX. Indeed, internal calls in a remote office are a

[34]

Download at Boykma.Com

Chapter 2

double whammy, as they are routed via the WAN to the PBX, and then routed back
to the same office! As a rule of thumb, it is worth seriously considering moving away
from a hosted setup if an office contains more than 50 or so extensions. Although this
can come down significantly if available bandwidth is quite limited or internal calls
are higher than one would normally expect for an office of that size. The good news
is that, for a smaller office, the hardware specification required to run an Asterisk
server capable of handling the lower call volumes is modest indeed.

Latency and jitter

With any telephony system, bandwidth will determine the maximum number of
concurrent internal and external calls that can be made. However, bandwidth is
far from being the only consideration, irrespective of whether your installation is
centralized or distributed. The latency characteristics of the circuits, LAN, and
WAN, will dictate how well those calls get carried, and how the quality of those
calls is perceived.

[Latency is the amount of time a message takes to traverse a system.]
i

There are many factors that can influence latency including processor speed,
available memory, disk spindle speed, and so on. However, in virtually all hosted
installations communication circuits is the defining factor. When there is a limited
amount of latency that a commercial system can bear, choosing the most appropriate
circuit provider is vital. In fact, choosing a circuit with low latency is arguably

even more important than reliability, as it is easier to introduce redundancy to
communications circuits based on availability (if circuit A is down switch to circuit
B) than it is based on latency (if circuit A is showing high latency switch to circuit B).

Asterisk as a PBX also copes much better than phones with high latency, and has
mechanisms to help, such as the qualify= and qualifysmoothing= entries in
sip.conf and iax.conf, which ensure that endpoints are pinged by the server
periodically to check that they are still available.

In larger organizations, care should be taken with the use of
M qualify=yes as it tends to ping all the endpoints at the same time,
Q generating a temporary packet "storm". If endpoints de-registering
is an ongoing issue, and your endpoints have the facility to generate
their own registration "keep-alive" traffic, then that is a better solution.

[35]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

As a result of these measures you should only have audio delay and/or echo to
worry about, and the latency mentioned above will be the likely cause of that.

You can perform a quick audible echo check by using the Echo ()
Wl dialplan application in Asterisk like this:

Q exten => *77,1,Echo()

This will allow anyone that dials *77 to hear any echo, as their audio
is fed straight back to them.

It is also worth mentioning jitter in relation to circuit quality. Whereas latency is the
delay between a message being sent from one side of a circuit and received at the
other, jitter refers to how consistent this delay is.

Jitter is the variation in the time between packets arriving, and can
%@“ be caused by network congestion or changes to the route traversed
’ by concurrent packets.

So while you can measure latency in terms of a single packet traversing a circuit,
you need to measure jitter over time, to see just how consistent that delay is. A
low-jitter circuit will tend to deliver packets in pretty much the same order they
are transmitted. If jitter is high then packets will start to arrive out of order, with
the result that the audio will start to distort.

To illustrate latency and jitter, have a look at the sample graph that follows:

Latency (ms)

30

—atency
10

I e T T T T T T O T s T T e e T e R B
Lo B S 0 T S T o BN = i e s B o B B B IS N E B e i - <]
L T B B T e T I |

Download at Boykma.Com

Chapter 2

As you can see, the latency over time is consistently between 15 and 25 ms, which
for a WAN is not at all excessive. However, it is far from being a smooth graph, and
in real life such "jitter" on a circuit would result in a significant deterioration in the
quality of the transmitted audio as many packets would be delivered out of order
to the endpoint.

Bearing latency and jitter across a WAN in mind, many companies choose to forego
the opportunity to save a few pennies by ignoring domestic-grade circuit options
(predominately Asymmetric Digital Subscriber Line [ADSL]). The major commercial
circuit providers in the UK, such as BT, Tiscali, and the likes are capable of providing
circuit SLAs that not just guarantee a certain level of availability but also provide
guarantees about latency. As always, it is worth doing your homework before
committing to a choice that can make such a huge difference to end-user perception
of the system.

There is an Asterisk dialplan called MilliWatt () which, when run,

\l produces a continuous tone of 1004 Hz:

~ exten => *78,1,MilliWatt ()
When listening to this tone, distortions or breaks can be an indication that
jitter is present and should be investigated. The likely cause will be the
LAN/WAN infrastructure between the PBX and endpoint.

Unfortunately, in any call that terminates outside your company, you only have
control over part of the picture. Once the call traffic leaves your system you are

at the mercy of the Internet, and the other party's system. If they are still stuck in
traditional analog telephony land, then latency and jitter at their end is likely to

be low and any problems are probably yours. If they are enlightened VolIP users,
then excessive latency or jitter may be down to their LAN/WAN, the Internet, or
your LAN/WAN. So you need to make sure your house is in order before you start
pointing fingers. However, if you have set up your system with low latency and
jitter as a priority, and you run regular checks to make sure that those latency targets
are being met, then you should be able to sleep easily. Indeed, having carried out
the necessary investigations, research and tuning to ensure yours is a low-latency,
low-jitter Asterisk installation, this could be an opportunity for you to share your
knowledge, for an appropriate fee of course!

[37]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

So how do you identify and address these issues? On an Asterisk server, you can get
a good idea of the latency between hosts and peers by running the c1i commands
iax2 show peers or sip show peers—as long as you have qualify=yes in the

peer profile. On the PBX CLI type:

iax2 show peers

Name/Username Host Mask Port Status
IAXTrunkl 217.14.138.130 (8) 255.255.255.255 4569 Unmonitored
201 192.168.10.201 (D) 255.255.255.255 4569 OK (4 ms)
IAXTrunk2 (Unspecified) (s) 0.0.0.0 4569 Unmonitored

3 iax2 peers [l online, 0 offline, 2 unmonitored]

iax2 show peers (above) lists a number of iax2 trunks (status Unmonitored) and
an iax2 extension. The extension is showing a delay of 4 ms, which is indicative of
an extension on the local LAN (which this is). On the PBX CLI type:

sip show peers

Name/username Host Dyn Nat ACL Port Status

SIPTrunkl 217.10.79.23 N 5060 OK (79 ms)
SIPTrunkl 217.10.79.23 5060 OK (79 ms)
251/251 192.168.10.201 D N 5060 OK (54 ms)

sip show peers (shown above) also shows registrations of both trunks and
extensions. In this case, we can see that the local extension 251 is showing a delay
of 54 ms, which is high for a device on the same LAN and should be investigated.

+ The SIP delay time is actually the time taken by the device to respond to a

notify command rather than just a ping response, so can be affected by
g processing time on the device.

If all devices on the network support ICMP, and I would certainly recommend that
you allow ICMP internally, then ping can also be used on the server to verify this
information. If the ping delay is similar to the delay shown in the commands above,
then you have a latency issue on your LAN/WAN. If the ping command is much
lower, then the problem is likely to be with the device itself.

Tracking the cause of latency issues, particularly in a distributed environment, can
be greatly assisted by the use of the tracert and tracepath commands. If a packet
has to pass through a number of routers and switches to get from server to device,
these commands will give you an indication of how long each step takes. It can
even reveal that unexpected routes are being traversed. The commands are virtually
synonymous, so use whichever you prefer.

[38]

Download at Boykma.Com

Chapter 2

Jitterbuffer

If you wish to look at the latency and jitter information for an active IAX2
(Inter-Asterisk Exchange) call then you can use the iax2 show netstats command,
which shows the latencys, jitter, and lost packets for all active IAX2 calls. This
command assumes that you have enabled the Asterisk jitterbuffer on the IAX2
channel. The jitterbuffer is a mechanism for dealing with excessive jitter on a
channel. Up to version 1.4 of Asterisk, the jitterbuffer only worked on IAX2 and ZAP
channels, but from 1.4 onwards, it will also work with RTP channels such as SIP

and H.323. The jitterbuffer works by buffering incoming packets, examining their
timestamps and, where possible, re-ordering them so that they are delivered to the
endpoint in the right sequence.

Jitterbuffers work best as near to endpoints as possible. If an
endpoint has its own jitterbuffer capability then that is usually
T preferable to it being carried out on the PBX.

To enable the Asterisk jitterbuffer for a SIP channel, for example, you should add the
following lines to the [General] section of your sip.conf file:

jbenable = yes|no (Enables the use of a jitterbuffer on the receiving
side of a SIP channel.)

jbforce = yes|no (Forces the use of a jitterbuffer on the receive side
of a SIP channel. Defaults to "no".)

jbmaxsize = Number (Max length of the jitterbuffer in milliseconds.)
jbresyncthreshold = Number (Jump in the frame timestamps over which
the jitterbuffer is resynchronized. Useful to improve the quality of
the voice, with big jumps in/broken timestamps, usually sent from
exotic devices and programs. Defaults to 1000.)

jbimpl = fixed|adaptive (Jitterbuffer implementation, used on the
receiving side of a SIP channel. Two implementations are currently
available - "fixed" (with size always equals to jbmaxsize) and
"adaptive" (with variable size, actually the new jb of IAX2). Defaults
to fixed.)

jblog = no|yes (Enables jitterbuffer frame logging. Defaults to "no".)

Care should be taken in using jbforce, as it will introduce a delay for all inbound
traffic, whether it has excessive jitter or not. Indeed, for this reason, you should
only consider the use of a jitterbuffer at all if you are finding that jitter is adversely
affecting the quality of a significant percentage of calls. If your circuit latency is
marginal, then adding a jitterbuffer into the mix could introduce enough latency
to make echo detectable on calls.

[39]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

Echo

These commands should provide you with enough information in most cases to

at least give you a head start on the likely causes of any latency issues. Thereafter
you can use commands such as sip set debugor iax2 set debug to gather more
detailed information on the fly which can then be examined in the log.

So what level of latency in a system can be deemed to be acceptable? It's well
documented that the human ear can detect delays in audio above 300 ms, so if there
is latency greater than 300 ms, the user will hear an audible delay or even an echo.
Why? Back in days of yore, telephone engineers found that they needed to feed what
you were saying back into the ear piece, a feature known as sidetone. If they didn't,
then the user would think they'd been disconnected. Of course, traditional PSTN
systems, with their inherent low latency, only had an issue when large distances
were involved. In other words, national calls tended to be fine, but international
and intercontinental calls suffered to a greater or lesser degree from echo as well

as significant delay between the transmission and reception of the voice signal. Bad
echo makes it very difficult to concentrate on a conversation.

Another downside of high latency is that not all IP phones cope well with it,
although some do better than others. For example, experience has shown Linksys
phones to be good in distributed installations. Others will fail to register overtime
and therefore go off-line. This isn't always immediately obvious, either leading to the
potential for important calls to go straight to voicemail, or even be lost altogether.

Do your homework

Coming back to the customer's network, how do we ensure that it will carry

the expected voice traffic without excessive latency or jitter, and with adequate
availability? It's difficult to guarantee a high level of network availability to a
customer without knowing what you have in the first place. While not usually
being up to the standard of voice networks in terms of reliability and call quality,
Ethernet-based IP network are so prevalent these days that many SMEs (Small and
Medium Enterprises) follow the well-worn adage that if it ain't broke then don't fix it,
even if the stability of the network is not ideal. Remember, though, that we are now
planning to introduce a system that demands the highest levels of availability. The
99.5% uptime figure that the customer might have deemed perfectly adequate in the
context of their data network, is nowhere near high enough for a telephone system,
equating as it does to 18 seconds of silence in an average hour. Even worse is the fact
that any active calls will be dropped unceremoniously.

Don't forget also that your Asterisk system is going to place new demands on the
bandwidth of your customer's network, both internally and on the route(s) to the
Internet. It is true to say that decisions on such things as the choice of codec used for

[40]

Download at Boykma.Com

Chapter 2

the voice traffic will determine your overall bandwidth requirements, and it is quite
typical for these decisions to be informed by the currently available bandwidth, and
of course the cost of improving either its capacity and/or quality if required. The
work to determine exactly where this improvement is needed can actually be quite
an easy 'sell', particularly if the customer is experiencing difficult-to-trace network
performance issues. It is not unusual to unearth, say, a domestic 10 Mbps hub hidden
away under a desk, causing all sorts of network performance issues. Removing such
obvious no-no's could probably reduce, maybe even completely negate, the need for
a network upgrade.

Therefore, your first task should be to carry out an audit of the customer's network.
The extent of this audit is reliant on such factors as the customer's existing network
documentation, their budget for the new VolP system, and their commitment

to doing whatever is needed to ensure the success of the new system. The form

of the audit can be anything from a perusal of their documentation, or a quick

visual inspection (looking for those errant hubs), through to a complete 'sniff'

of the network measuring traffic throughout. It is not unusual for more detailed
audits to be outsourced to specialist IP Networking companies that have in-depth
skills and the right equipment for the job. For this decision, there is a cost/benefit
calculation to be made that will undoubtedly vary with each customer. However, it
is perfectly possible to get adequate information that will allow you to gain a good
understanding of the customer's network throughput without outsourcing the work.
If the customer uses managed switches, then the job will be pretty easy, as virtually
all will allow you to see real-time traffic information and download that data for later
analysis. This is also true for the majority of routers, although that does rely on the
customer having access to the router interface. If the router is managed externally
then there will be a need to request the data from the service provider.

Should the customer not have a means of extracting the data from switches and/or
routers, then you will need to consider the use of network monitoring software. In the
open source world, ntop or, at a pinch, Wireshark (formerly Ethereal) can be used to
monitor bandwidth usage. In the commercial sphere, companies such as Solarwinds
and PacketTrap are just two that have established and very capable products.

While it's not essential to have the software and skills to carry out an effective audit of
a customer's network, if you're planning to offer the "complete package" then it would
be wise to develop your competency in this area to a point where you can deal with the
simpler situations. After all, if you can give an immediate overview assessment of the
quality of the network then you can only impress prospective customers. Once signed
up, ongoing network monitoring would be a useful service to offer too, as it allows you
to be more proactive. Most customers are impressed when you tell them they have an
impending problem that they were not aware of themselves.

[41]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

SLAs are for everyone

The audit should be aimed at providing the customer with a roadmap to improving
their network up to agreed levels of quality, stability, and resilience. As already stated,
voice networks have an availability and quality expectation that is far in excess of the
typical SME computer network. It is not unusual for availability expectations to be
five nines (99.999%), and for the supplier (yes, that's you) to provide a Service Level
Agreement (SLA) with penalties if that figure is not achieved.

Some suppliers fight tooth and nail to reduce that SLA figure, but there is no reason
to do so as long as you realize they can be a means to gain agreement on who

is responsible for which part of the overall system up front, and might possibly
differentiate you from the competition if you are in a commercial situation. As long
as both you and your customer, whether they are internal or external, are being
realistic, there is no reason why you cannot specify that certain preconditions are
met before such an SLA can be offered, such as a certain level of bandwidth and
latency across the network. You would also need to agree on the line of demarcation
between "your" part of the system (such as the server, phones) and the customer's
part (such as the underlying network) once any initial implementation work

has finished and the enhanced network has been handed over to the customer's
operations and maintenance team. But all such discussions should be approached
with a view to the ultimate objective. After all, the goal for both sides should be to
end up with a great phone system.

Achieving the goal

By now, you've probably agreed with the customer that their network needs work
to achieve the agreed service levels. Let's have a look in a little more detail at how
that network should look, bearing in mind all the time that the final product will

be unique for each customer, given their different needs. Almost always, though,
the emphasis will be on making improvements to achieve higher levels of quality,
stability and resilience. Here we will look at what is required to achieve the required
quality standards. Chapter 7 will explore the topics of stability and resilience in
more detail.

In IP networks, quality is usually synonymous with dropped packets, or more
accurately with the lack of dropped packets. Traffic across an IP network is not

sent in a continuous stream, as in an analog voice network, but rather packaged

up into discrete units and sent out into the network with a destination address as
part of the package. As suggested by the terminology used, it is not dissimilar to
sending packages by post, although in the network each package is pretty much the
same size, so larger items are broken up before being sent and reassembled at the
destination. It's a bit like getting your flat-pack furniture piece by piece.

[42]

Download at Boykma.Com

Chapter 2

Many things can cause these packets to go astray, but the IP protocol has a

built-in mechanism (TCP or Transmission Control Protocol) for recognizing this
has happened and requesting a resend of the package. This is achieved by including
a checksum with each package to ensure that its data is received intact, and by
acknowledgement of each package being sent back to the transmitting node. TCP

is used for quality-sensitive data, that is, data that requires all the packages to be
reassembled if it is to make sense. This is because there is no significant "storage
area' for packets on a network, they travel at a certain speed and if they can't be
dealt with inside a predefined time, then they are dropped.

For most types of traffic re-sending is usually very effective. After all if your 20 MB
file download is delayed by a fraction of a second while a package is re-sent then you
probably won't even notice. However, there is an appreciable amount of extra data
and traffic generated, which can cause problems in networks that have a time-critical
quality requirement, such as voice networks. Therefore, an alternative protocol (UDP
or User Datagram Protocol) is used for voice and other "streamed" traffic, as there is
no significant loss of perceived quality if small numbers of packets go astray between
source and destination. The problems, such as latency and jitter, arise when larger
amounts go missing in action.

Within company IP networks, dropped packets typically start occurring when

traffic levels get too high. An analog voice network works by setting up a channel
with more-than-adequate "bandwidth" between the two parties that is not used by
anyone else. Think back to the old switchboard operator moving plugs around on a
board, this is exactly what she was doing. An IP network, on the other hand, works
on a similar basis to a sorting office, where everything posted converges on a central
place (the router on a network) where the address is read and it is sent along the
correct path towards its ultimate destination. However, if there are lots of letters and
packages in the system, then post boxes can overflow, pickups can be missed, sorting
equipment and people overloaded and the whole system would struggle to cope. So
it is with a computer network.

Dropped packets in a computer network can frequently be traced to mismatched
components, such as the aforementioned hub being used to allow a number of desks
to utilize a single network floor port. It's all very well specifying that your comms
cabinet be stuffed with Gigabit switches, and that all your PCs have 100 Mbps
capability, but stick a 4-port 10 Mbps hub in the middle and the PCs plugged into

it will be throttled to 2.5 Mbps or less. Then start adding IP phones on to each desk,
or using softphone software on each PC, and you can see how it all gets messy

very quickly.

[43]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

At this point it is worth saying that, for a network carrying voice traffic, using
network switches instead of hubs is a no-brainer. Switches go much of the way
towards setting up dedicated channels between one port on the network and
another, and are much more effective than hubs. The price difference between hubs
and switches has reduced significantly in the recent past, removing the greatest
barrier to their adoption. If your customer insists on an SLA, you should only agree
if their network is fully switched. In fact, being realistic, you should only ever
implement a VoIP solution over a fully-switched network as using hubs will cause
you problems sooner or later by undermining any other steps you may take to
ensure high quality voice traffic.

Furthermore, at the time of writing, Gigabit switches have reduced in price to the
extent that serious consideration can be given to using them instead of 100 Mbps
switches throughout the network. After all, many new PCs these days come with
Gigabit network cards as standard, so putting 100 Mbps switches in your network
will, again, artificially throttle speeds. Be aware, though, that there can be a
significant difference between a cheaper Gigabit edge switch and a top-end Gigabit
core switch, particularly in processing speed. In most cases it's better to have a good
quality 100 Mbps core switch than a cheap Gigabit core.

It can be a big task to bring Gigabit ethernet to the desk, though, if the current
wiring is not up to scratch. Hence, should the introduction of Gigabit throughout the
network be out of scope then there is no serious need for concern. A well designed
and implemented 100 Mbps network has plenty of bandwidth for voice traffic, even
if it is not as future-proof as it might be.

Backups

One area that can cause problems is if data backups are run across the network
during working hours. You'd be surprised how many companies run their backup
routines at times when high call volumes can be expected, even during the

lunch hour. Such activities have the potential of sucking up 99% of the available
bandwidth. For this reason, it is not unusual for larger companies to route server
backup traffic over a physically separate network to guarantee that it will not
adversely affect front-office activities. For smaller companies this may be too costly
an option, so a backup "window" needs to be identified that will occur during low
call volume times.

To share or not to share

When designing your voice-capable network, one important consideration is
whether or not to carry voice and data traffic on the same network infrastructure.
In other words, should you implement a completely separate IP network for your

[44]

Download at Boykma.Com

Chapter 2

phones, PBX, and Internet circuit? While there are significant benefits to doing so,
particularly in terms of assuring bandwidth for voice traffic, in general it's probably
not sensible for a couple of reasons.

The first reason covers practicality, particularly around the availability of floor or
wall network ports. As many offices were designed around the desire to have one
port per desk, it is usually a pretty disruptive exercise to increase that to two ports
per desk, as you will need to do if you are to physically separate the voice and data
traffic. The customer may also find the increased cost of switches and so on to be
quite impractical. The "two ports per desk" impracticality can be assuaged somewhat
through the use of VLANSs (Virtual LANs), whereby logically separate LANs run
side-by-side on the same physical equipment. Often VLANSs are implemented by
assigning switch ports into groups that allow them to communicate with each other
but not with ports in other groups.

Computer Computer

Computer

Computer

In the preceding diagram, we can see that PCs connected to ports 1, 3, 6, and 8 on
the switch are on the same VLAN, thus they can communicate with each other

but not with any of the PCs connected to other switch ports. Be careful, though,

as port-based VLANSs will ensure that each port switch will only carry one type of
traffic (VoIP or data), which will not remove the need to have two ports per desk if
complete traffic segmentation is a "must have" requirement.

[45]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

There are alternative mechanisms for implementing VLANS, such as tagging traffic
based on subnet, protocol, or MAC address. All serve the purpose of separating
LAN traffic into logically separate networks on a single physical network, but as
the segmentation is not based on a physical connector (that is, the switch port) they
will allow for a desk's VoIP and data traffic to be routed over a single network port.
Most business-grade IP phones now come with a two-port switch as standard,
which allows you to plug the phone into the existing network port, and then plug
the PC into the phone. A MAC, subnet, or protocol-based VLAN will then allow
you to logically segment the VoIP traffic. The downside of this setup is that if the
phone needs to be restarted, there will be a temporary interruption of the network
connection to the PC. Make sure the customer is aware of this.

VLANSs have the advantage of reserving bandwidth solely for voice traffic, while

not necessarily needing to incur the extra cost of multiple switches. This does
assume that you have an adequate number of ports free on your current switches if
you decide to use port-based VLANs. However, the cost savings are greater when
volumes are higher, as you can replace many smaller switches with fewer larger
ones. As we will see later, using VLANSs can also bring some advantage in increasing
resilience to switch failure.

One interesting way around the issue of floor port availability is to use wireless
technology for desk phones. Both Wi-Fi (802.11 in its various flavors) and DECT are
gaining ground in the VoIP handset market, partly because they neatly sidestep this
concern. They also allow for mobility within the workplace in situations where that
is desirable, warehouses for instance. In a world where mobile telephony is firmly
ensconced, they do not look out of place, although moving from desk phones to
mobile handsets in some companies can still be too much of a culture change. It is
fair to point out, too, that wireless technology has its downsides, such as:

e The cost of a wireless-based system will probably be greater than the one
based on desk phones.

e Wi-Fi phones are currently notorious for having poor battery life.

The Wi-Fi or DECT network of repeaters needs careful design to ensure there are no
poor signal areas in and around the buildings and to ensure that seamless handover
from one base-station to another can occur. Be aware also that the choice of VoIP
codec and Wi-Fi protocol can limit the number of simultaneous calls per base station.

You can get more information on this at: http://www.oreillynet.com/
s—" etel/blog/2005/06/maximum number of voip telepho.html

[46]

Download at Boykma.Com

Chapter 2

For now, DECT technology is mature enough to warrant serious consideration,
but Wi-Fi solutions seem to retain too many issues still, although it is a rapidly
maturing marketplace.

Another area that is often overlooked is power. Perhaps it's a hangover from analog
phone days, but it's not unusual for customers to be unaware that an IP phone is

a powered device. As it is frequently the case that there are too few power sockets
for each desk in an office, use of Power over Ethernet (PoE) capable phones and
switches is worthy of very serious consideration in all roll-outs. The added cost is
only significant in systems with a small number of extensions, and even in these
cases it may well be that only certain key phones need to be powered in the event
of an outage, reducing the number of PoE switches required. By providing battery
backup for the PoE switch and other critical devices, service can be maintained for
short periods.

The other downside of completely separating voice and data network traffic is that
Computer Telephony Integration (CTI) becomes more difficult to implement. Many
IP phones these days have bundled with them software that allows for computer
integration, such as selecting a contact from your address book and clicking a
button on screen to initiate a call, or having a contact's details pop up on screen
automatically when they call you. If, for instance, a company relies heavily on its
CRM software, then such integration can save employees a lot of time and thus
provide better service to customers. Where CT1 is implemented server-side, there

is less of an issue as it is relatively easy to add a network interface to the server that
bridges the two VLANs/LANs. However, you may have network security engineers
up in arms if you implement such a bridge!

Ensuring quality

Should you decide, for whatever reason, to carry voice and data traffic on the same
network, then there is one network service you should implement if you are to avoid
voice performance issues. We are assuming that you have already ensured that the
network is at least 100 Mbps end-to-end, and preferably Gigabit. However, this alone
is not enough, particularly if you are working to an SLA. Fortunately, this issue has
been recognized and addressed through the Quality of Service (QoS) protocols.

Quality of Service is simply, as its name suggests, a means of ensuring quality on an

IP network. A typical IP network will carry traffic for many different services, whether
they be very much in the background (NTP or Network Time Protocol might be a good
example of this) or quite obvious to the end user (HTTP for instance).

[47]

Download at Boykma.Com

Network Considerations when Implementing Asterisk

While most of these services can tolerate some delay as packets are re-sent,
occasionally a network may run a service that is time-critical, such as voice traffic

or streaming video. Using QoS on managed switches or routers, time critical traffic
can be given a relatively high priority so that, if bandwidth is limited, such traffic is
delivered before lower priority packets. There may also be mechanisms for allocating
a portion of the available bandwidth solely to certain services.

If you are required to offer your customer an SLA on a network that shares voice and
data traffic, then you should insist on QoS being implemented. Otherwise, the first
time a user downloads a large file from the Internet, voice quality will plummet. It

is also worth remembering that, to be truly effective, QoS needs to be implemented
throughout the extent of the route that is bearing shared traffic. In other words, there
is little point in having QoS on your LAN if, once the traffic is passed on to your

ISP, there is no QoS for the rest of the route. The easiest means of addressing this
problem is to have a dedicated voice circuit outside the LAN. For a small business
this may mean one ADSL line for voice traffic and another for other Internet traffic,
for instance.

There are two approaches to QoS —IntServ and DiffServ. IntServ allows a very fine
level of control of QoS parameters, where you can determine the quality levels for
each individual flow of traffic. IntServ requires that all routers that could potentially
carry traffic between the nodes on a network are compliant and store all the
configuration information for each traffic flow on the network. There is a significant
overhead involved with this approach as the number of nodes grows, which
obviously does not scale well to a network the size of the Internet, and so is not a
common approach for VoIP installations.

The more common QoS implementation — DiffServ — does not offer quite the same
level of control, but will scale much better. It requires all traffic to be categorized into
a number of classes, which then have the quality rules applied to them. Usually, the
classes are rated from 0 (lowest quality) to 7 (highest quality). In a router, packets
are examined to determine which class they are in, and held in one of a number of
queues until their 'turn' has come to be transmitted. This can actually result in an
increase in network traffic if too many low-priority packets are being held in queues
until they expire, resulting in the need for re-transmission.

A successful end-to-end QoS implementation requires that all routers in the path are
configured to treat each class of service in the same way. Therein lies the problem
with most commercial VoIP implementations, as it is usual for the customer to have
little or no say in what happens to traffic, regardless of which class of service it is
tagged with, once it leaves the LAN and starts traversing the ISP's network and the
Internet. It is also possible that an ISP's customers would try to gain an advantage by
categorizing all their traffic as highest quality. Therefore, most ISPs will apply their
own rules to traffic traversing their network, a technique known as traffic shaping.

[48]

Download at Boykma.Com

Chapter 2

M As a maintenance task, it is wise to review all the classes each time you
make a significant change as the addition of another stream of traffic
into the VoIP class can have a hugely detrimental effect on call quality.

Bearing all this in mind, is it still worth implementing QoS within a LAN? I would
have to say that if you are carrying voice and data traffic on the same LAN then it
is, mainly because it will prioritize voice traffic between the PBX and the phones,
and also ensure that outbound voice traffic is presented to the ISP before less time-
sensitive traffic. In particular, it will ensure that a user downloading a large file will
not suddenly grab all the available bandwidth. But you, and your customer, should
be aware that it does not guarantee high quality external calls, it merely mitigates
some of the risks. As previously stated, a dedicated voice circuit is the easiest means
of addressing this problem (outside the LAN). For a small business, this may mean
one ADSL line for voice traffic and another for other Internet traffic, for instance.

When things go wrong

However well a network is designed, and regardless of the quality of the components,
one certainty is that somewhere along the line something will go wrong. Good design
and components may push that point back in time somewhat, but it will happen. It
might be a device on the network that breaks, it might be a cable that works loose

or gets bent, or it might be a switch port (or even a whole switch) that fails. At this
point, the time and effort you spend on developing plans to deal with such issues will
determine how badly the business is affected by the network issue. If you have no plan
then you will be launched into a frenzy of high priority activity every time an issue
occurs, however small. If you have foolishly agreed to an SLA with no provision for
dealing with such issues, then you are bound to end up breaching it.

All is not lost, however, as putting a provision plan together is basically about
applying common sense. Firstly, you should consider where you might experience
problems; the answer is everywhere, but break it d